обширное пространство - significado y definición. Qué es обширное пространство
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es обширное пространство - definición

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО, В КОТОРОМ В КАЖДОЕ ОТКРЫТОЕ ПОКРЫТИЕ МОЖНО ВПИСАТЬ ЛОКАЛЬНО КОНЕЧНОЕ ОТКРЫТОЕ ПОКРЫТИЕ
Паракомпактность; Счётно паракомпактное пространство; Слабо паракомпактное пространство; Метакомпактное пространство; Точечно паракомпактное пространство; Сильно паракомпактное пространство; Гипокомпактное пространство; Субпаракомпактное пространство; Fσ-просеянное пространство

Унитарное пространство         
ЛИНЕЙНОЕ ПРОСТРАНСТВО НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ СО СКАЛЯРНЫМ ПРОИЗВЕДЕНИЕМ
Эрмитово пространство; Комплексное евклидово пространство
Унитарное пространство — векторное пространство над полем комплексных чисел с положительно определённым эрмитовым скалярным произведением, комплексный аналог евклидова пространства.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
Ба́нахово пространство — нормированное векторное пространство, полное по метрике, порождённой нормой. Основной объект изучения функционального анализа.
Банахово пространство         
ПОЛНОЕ НОРМИРОВАННОЕ ВЕКТОРНОЕ ПРОСТРАНСТВО
Полное линейное пространство; Пространство Банаха; Банаховы пространства
(по имени С. Банаха

полное нормированное Линейное пространство.

Wikipedia

Паракомпактное пространство

Паракомпактное пространство — топологическое пространство, в любое открытое покрытие которого можно вписать локально конечное открытое покрытие.

При этом: семейство U {\displaystyle {\mathcal {U}}} множеств, лежащих в топологическом пространстве X {\displaystyle X} , называется локально конечным в X {\displaystyle X} , если у каждой точки x X {\displaystyle x\in X} существует окрестность в X {\displaystyle X} , пересекающаяся лишь с конечным множеством элементов семейства U {\displaystyle {\mathcal {U}}} ; семейство U {\displaystyle {\mathcal {U}}} множеств вписано в семейство V {\displaystyle {\mathcal {V}}} множеств, если каждый элемент семейства U {\displaystyle {\mathcal {U}}} содержится в некотором элементе семейства V {\displaystyle {\mathcal {V}}} .)

Паракомпактом называется паракомпактное хаусдорфово пространство. Паракомпактность является одним из исходных требований в теории многообразий.

Каждое хаусдорфово паракомпактное пространство нормально. Это позволяет строить на паракомпактах разбиения единицы, подчиненные произвольному заданному открытому покрытию.

Ejemplos de uso de обширное пространство
1. В тени масштабных задач часто остается обширное пространство для вопросов.
2. Этого явно недостаточно, чтобы контролировать наше обширное пространство.
3. Потенциал интеграционного проекта как механического распространения модели на все более обширное пространство исчерпан.
4. Скульптура обычно совсем не пользуется спросом, ведь она предполагает обширное пространство для своего размещения.
5. Для этого участникам предоставлено обширное пространство, на котором можно "высказаться" в какой угодно форме.
¿Qué es Унитарное пространство? - significado y definición